If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+229x+122=0
a = -4.9; b = 229; c = +122;
Δ = b2-4ac
Δ = 2292-4·(-4.9)·122
Δ = 54832.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(229)-\sqrt{54832.2}}{2*-4.9}=\frac{-229-\sqrt{54832.2}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(229)+\sqrt{54832.2}}{2*-4.9}=\frac{-229+\sqrt{54832.2}}{-9.8} $
| 5/16+3/8y=2+1/4y | | 0,76(-2x-3)=0,19x+6 | | 5x^2-23x-3=8 | | y=4/5/(-2) | | x^2-64x-80=0 | | 2=-8u+5(u+4) | | (8x-24)/4=66739592 | | 5x+28=135 | | 131-y=211 | | X=0,x=-2,x=4 | | 1.4+0.6x=0.8x-2.6 | | 5x(3x+7)=0 | | h/5=−7/12 | | −7/12=h/5 | | 5x-4/6=4x+1=3x+10/2 | | 2x+12=8(x-6) | | (2x^2+7)=0 | | −3/5=9j | | -x^2+48x+36=0 | | -1/12(x^2)+4x+3=0 | | -1/12x^2+4x+3=0 | | -1/12^2+4x+3=0 | | 0=-1/12^2+4x+3 | | 7^x-7=6 | | 5x=6(5x+4) | | -11-5x=6(5x+4 | | 12x+8x=400 | | 5(x+11)=43 | | (6+x)-4-8x=8 | | 2y+1y=39 | | 36=12v-8v | | x+-0.25x=72 |